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Abstract. Pulsed wavefields contain moving lines, called wave dislocations, where the 
amplitude is zero. As the lines move they sweep out surfaces called dislocation trajectories. 
The paper describes an experiment with ultrasound designed to test the theoretical predic- 
tion of Wright and Nye that, for small bandwidth, the trajectories are close to parts of 
frequency minimum surfaces: that is, surfaces on which the corresponding continuous-wave 
amplitude pattern has a minimum with respect to changes in frequency. ‘Close’ here means 
to second order in the bandwidth, and the prediction is indeed confirmed to this accuracy. 

1. Background 

When pulses of waves, originating from a common source, travel by different paths 
and interfere with one another they produce ‘wave dislocations’ (Nye and Berry 1974, 
Berry 1981, Nye 1981). These are generalisations of the interference fringes that would 
be produced if the waves were continuous (monochromatic) rather than pulsed. While 
perfect interference fringes, zeros of amplitude, made by continuous waves are lines 
stationary in space, the dislocations made by pulses are moving lines, which sweep 
out stationary surfaces called dislocation trajectories. 

A receiver placed on a dislocation trajectory will typically find a signal like that 
of figure 1. The special feature is that the envelope of the oscillation has zero amplitude 
at a particular time, this being in fact the time at which the dislocation line moving 
through space passes through the receiver. The word ‘dislocation’ is used because the 
wave dislocation lines disrupt the spatial wave in the same way that crystal dislocation 
lines disrupt a crystal lattice. 

For continuous waves the main features of a three-dimensional diffraction or 
interference pattern are well described simply by the arrangement of stationary line 
zeros or stationary dislocations. When pulses of waves interfere, the spatial pattern 
of amplitude of course changes with time; nevertheless its main features are still 
described by the array of dislocation lines, but in this case they are moving. 

Figure 1. A pulse signal showing a dislocation. At the dislocation, seen in the centre of 
the diagram, the envelope of the signal has zero amplitude and the phase of the signal 
jumps by m 
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The question may now be asked: how are the moving dislocations of the pulsed 
wavefield related to the stationary dislocations of the continuous wavefield? An answer 
has been given (Wright and Nye 1982) for the case where the bandwidth of the original 
pulse is small, that is, where there is only a small departure from monochromaticity, 
as follows. 

If the source oscillation were not a pulse but a single frequency w at unit amplitude, 
the diffraction pattern would be specified in amplitude and  phase by a complex transfer 
function a ( r ,  w ) ,  where r is a position vector. Thus a ( r ,  w )  describes the ensemble of 
monochromatic diffraction patterns at various frequencies. Now suppose the source 
oscillation to be a pulse of narrow bandwidth and  centre frequency wo. The theoretical 
prediction is that, to a good approximation, the trajectories of the moving dislocation 
lines will be parts of the surfaces described by 

i n  other words, the surfaces on which the amplitude of the continuous-wave diffraction 
pattern for frequency wo is a minimum with respect to variations of frequency. 

In this paper we describe an  experiment with ultrasound designed to test 
relations (1). 

2. Real and complex pulses 

Although a dislocation may be defined, as we have seen, as the locus of points in 
space and  time where the envelope of the physical signal is zero, strictly speaking, the 
envelope itself is not actually observed, only the oscillation within it. To take proper 
account of this the theory considers a complex source oscillation Go( t )  and a corre- 
sponding complex received signal $ ( r ,  t) ,  and it defines a dislocation as the locus of 
points in ( r ,  t )  where $( r, t )  = 0. 

The complex signals $o( t )  and $(r ,  t )  of the theory are related to the real signals 
measured in a physical experiment in the following way. Let $o( t )  be written as 

where f( t )  is a slowly varying complex function and  wo is a chosen centre frequency 
within the bandwidth. Thus f ( t )  represents a slow modulation, both in amplitude 
and phase, of a carrier wave of frequency wo. We could imagine two physical experi- 
ments: the first with Re IL0( t )  as the source signal giving Re $(r ,  t )  at the receiver, and 
the second with Im Go( t )  as the source signal giving Im $( r, t )  at the receiver. Then 
the complex $(r ,  t )  would be known. However, it can be shown (Walford et a1 1977, 
Nye 1981) that, provided the modulation f ( t )  is slow enough to have negligible 
frequency content outside the band -wo < w < wo, only one experiment, say with 
Re Go( t ) ,  is sufficient to determine both the real and the imaginary parts of $( r, t ) .  

To d o  this first write $(r ,  t )  at a given r as 

where X(  t )  and Y( t )  are real and slowly varying. Then multiply the observed signal 
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Re $( t )  by cos w0t and sin wot to generate the two signals 

4X ( t ) + 4~ ( t ) cos 2w0t + f Y ( t ) sin 2wot 

and 

t Y ( t ) + f ~ ( t )  s i n 2 w o t - t ~ ( t )  cos 2wot. 

Finally, apply a low-pass filter to remove frequencies outside the bandwidth of X ( t )  
and Y( t ) .  Thus we obtain two signals proportional to X (  t )  and Y (  t ) ,  and the complex 
+( t )  is now known. A dislocation, defined by $( t )  = 0, can now be identified through 
(3) as a simultaneous zero of the two real functions X ( t )  and Y ( t ) .  

In our experiment Re +( t )  was multiplied by two square waves of frequency wo in 
quadrature, rather than by pure sinusoids. The only difference is that higher harmonics 
of wo are produced which are then removed by the low-pass filter. 

3. Principle of the experiment 

Our aim is to test relations ( l ) ,  but instead of doing a series of continuous-wave 
experiments to establish a ( r ,  w ) ,  and hence la(r ,  U ) \ ,  it suffices in fact to do a single 
experiment with a pulse, and to use Fourier analysis. Given that the source oscillation 
&( t )  produces the received signal +( r, t ) ,  it follows that, for given r, by the definition 
of a ( w )  as the transfer function, 

where bars denote Fourier transforms. Thus, by observing +o( t )  and +( t )  and taking 
Fourier transforms we can deduce a ( @ ) ,  and hence la (w) l .  

The experiment therefore consists of moving the receiver on to a dislocation 
trajectory (recognised as a simultaneous zero in X (  t )  and Y( t ) )  and measuring +o( t )  
and $ ( t ) .  The modulus l a ( w ) /  is then deduced, and, if the prediction is correct, it 
should show a minimum near w = wo, as in curve A of figure 2. There should be a 
special line on the trajectory, near a null line of the continuous-wave pattern for w = wo, 
where the minimum is zero, as in curve B of figure 2. 

t 

WO W 

Figure 2. Theoretical predictions: the modulus of the transfer function a ( w )  for a general 
point on a dislocation trajectory has a minimum near w = wo, as in curve A; if the receiver 
is situated on a special line on the trajectory surface, the height of the minimum is zero, 
as in curve B. 
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4. The experiment 

Even a single transducer, when stimulated by a pulse of oscillations, produces moving 
dislocation lines, in fact rings (Wright and Berry 1984), but experimentally it was more 
convenient to use two. The principle was as follows. Two sets of monochromatic 
uniform plane waves of equal amplitude at an angle to each other produce a set of 
parallel interference fringes; but the fringes in this instance are degenerate, being 
planes rather than lines. If, however, we introduce a linear modulation of amplitude, 
parallel to the wavefronts and in the same direction for both, as indicated in figure 3, 
the degeneracy is removed: the continuous-wave nulls are now a set of parallel lines. 
If, further, the sources of the plane waves are stimulated by a pulse rather than by a 
monochromatic oscillation (keeping the spatial modulation parallel to the wavefronts), 
the trajectories of (some of) the moving dislocations are parts of the parallel planes 
shown in figure 3 by the broken lines. This is the two-beam model worked out in 
detail by Wright and Nye (1982). 

The experiment (figure 4) we now report approximates this ideal model by arranging 
two sources of ultrasonic pulses S,,  S2 in air, about 15 cm apart and at an angle of 35" 
to one another. The centre frequency of 36 kHz corresponds to a wavelength of 9.5 mm. 
The two sources and the receiver were constructed from square piezoelectric bimorph 
devices (van Randeraat and Setterington 1974, 9 6.4) approximately one wavelength 

I I I I I  
I I I I I  

c$ 4 6 0 6 c w n u l l s  
I I I I I  
I I I I I  

Wave f t normal 

Increasing 
amplitude 

Figure 3. Two-beam model of Wright and Nye (1982). Two plane-wave pulses with 
amplitudes that increase linearly parallel to the wavefronts interfere to produce moving 
dislocation lines. The dislocation trajectories are vertical planes shown by broken lines. 

Figure 4. Approximate physical realisation of the ideal two-beam model. 
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across. We based the experiment loosely on figure 3 merely to make it easy to recognise 
the interference pattern; no precision was called for because the theory applies to any 
wavefield; indeed it was desirable to have some departure from the ideal arrangement 
to test the generality of the theory. 

In the region shown shaded, which is not on the axis of either polar diagram, the 
two wave pulses have amplitudes that vary parallel to the wavefronts, both increasing 
in the same direction, as required. Experimentally it was easy to manipulate a disloca- 
tion trajectory into the shaded rectangle by moving one of the sources vertically, for 
the resulting phase change shifts the whole pattern, including the trajectories, sideways. 

We must now consider the experimental interpretation of the transfer function 
a(r ,  U ) .  In the first instance it represents the complex amplitude of the acoustic 
diffraction pattern physically present in space. However, as Wright and Nye (1982) 
point out, a ( r ,  w )  can equally well be defined as including the transfer functions of 
the receiving and transmitting apparatus, provided all processes are linear, without 
changing the theoretical results in any way. This is very convenient experimentally 
because, in general, the dislocations observed cannot be exactly the same as those 
physically present in the wavefield, an inevitable consequence of lack of perfection in 
the receiving transducer and its associated circuitry. For example, because of its finite 
size the receiver may fail to resolve a close pair of dislocations. This definition of 
a(  r, w )  avoids all problems of acoustic calibration. 

Accordingly we now define cLo(t) to be the electrical voltage that drives the two 
transmitting transducers. The envelope is a top-hat function to a very good approxima- 
tion (figure 5) and gives a half-bandwidth U of 0 . 0 4 2 ~ ~  to 0.046~~ depending on how 

0.30 ms 

t 

Figure 5. Source signal used in the experiment. 

the bandwidth is defined. We shall take (T = 0 . 0 4 4 ~ ~ .  The amplitude of the ultrasonic 
waves the transducers actually emit will not, of course, be represented by figure 5 
because of their limited frequency response; in fact, as judged by the received signal, 
the wave amplitude rises smoothly until the driving pulse finishes (0.3 ms) and then 
decays exponentially, with a time constant of about 0.1 ms. Moreover, the two source 
transducers were slightly different. However, since their responses are already included 
in a(r ,  w )  we need only know that they are linear. 

(A possible objection to this definition of Go( t )  is that the theory demands a slowly 
varying pulse envelope, which this certainly is not. However, since we are interested 
only in frequencies near wo, this form of pulse envelope is perfectly acceptable provided 
it has a spectrum near wo that is the same, up to second derivatives, as some slowly 
varying pulse envelope, for example, a Gaussian: a condition that is easily satisfied.) 

Coming now to the receiver, the ultrasonic transducer used for this purpose was 
followed by mixers and low-pass filters which extracted the two signals X (  t )  and Y (  t ) .  
These were then amplified and displayed on an oscilloscope. The physical system 
described by a( r, w )  was taken to be that which produces these signals; thus a( r, w )  
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includes the frequency response not only of the receiver transducer but also of the 
associated circuitry leading to the observed voltages X ( t )  and Y ( t ) .  To detect a 
dislocation trajectory the receiver was moved until X (  t )  and Y (  t ) ,  as observed on the 
oscilloscope, were simultaneously zero for some t, the arrival time of the dislocation. 

Further processing of X (  t )  and Y (  t ) ,  being outside the physical system, had to be 
done without distortion, To obtain them in digital form each of these slowly varying 
signals was sampled within a preset time window of 110 ps. The position of the time 
window was then moved and the process repeated to cover the duration (about 1 ms) 
of the whole signal. The main sources of random errors, namely draughts and unwanted 
echoes, had already been minimised by enclosing the experimental chamber with 
acoustically absorbing material. Remaining random errors were reduced by averaging 
over 10 to 50 separate recordings at each observing station. 

These data were filtered using a Hamming window (see, for example, Blackman 
and Tukey 1958) and then Fourier analysed (using the NAG library routine C06ECF). 
The transfer function a ( w )  of the system was then calculated by complex division of 
the Fourier transform $ ( U )  of the received signal by the spectrum $o(w) of the original 
pulse. For this purpose $o(w) was found analytically by taking t,bo( t )  to be a harmonic 
waveform modulated by a rectangular time window (figure 5). 

The complex transfer functions at three stations along one trajectory are shown in 
Argand diagrams in figure 6( a) ,  the curves being parametrised by frequency, and the 
corresponding moduli l a (w) l  are shown in figure 6(b). The range of frequencies 
illustrated in figure 6(a)  is narrower than that in figure 6(b), and is only the central 
part of the total bandwidth 2u. The moduli la(w)l at the three stations show minima 
very close to w = wo, and to this extent the theory is verified. The minimum in the 
second diagram of figure 6(b) is very nearly zero, approximating curve B in figure 2. 
The different trajectories were 1-2 cm apart and the precision of setting the receiver 
on the selected trajectory was 0.1 mm. Moving the receiver away from the trajectory, 
rather than along it, would have caused the minima in figure 6( b )  to shift sideways, 
rather than to change their height. Nicholls (1984) gives further experimental details. 

The departure of the minima from w = w o  is 0.09u=0.004w0, where U is the 
half-bandwidth of the source signal. It is too large to be accounted for by experimental 
errors and can be explained as due to the approximate nature of the perturbation 

0 9 5 w 0  wo 1 . 0 5 ~ ~  0 . 9 5 ~ ~  wo 105w0 

Figure 6. ( a )  Argand diagrams of the measured transfer function a (  w )  for three rceiver points 
on a chosen dislocation trajectory. ( b )  The modulus of the transfer functions a ( w )  shown in 
( a )  plotted against W .  The letters correspond with those in ( a ) .  
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theory; relations (1) are only exact in the limit of small bandwidth. Theoretically the 
minimum of la(w)l should occur at a frequency differing from oo by an amount (Aw)th  
that is of second order in the bandwidth. An order-of-magnitude estimate, derived in 
the appendix from the Wright-Nye theory, is (Aw)th - ~ u ~ A T ~ ,  where  AT^ is the relative 
delay time between the two pulses arriving at the receiver when it is close to the null 
line of the continuous-wave pattern for w = wo. The possible values of are 
iT,iT,, . . , where T is the period (27r/w0), and we estimate ~ A T , = ~ T  or possibly #T, 
since the order of interference in the experiment was arranged to be low. Hence 

T U 2  3 7ru2 
(Aw)t*-- or - 

4w0 4w0 

and, with U = 0.044w0, this gives (Aw),h - 0 . 0 0 1 5 ~ ~  or possibly 0 . 0 0 4 6 ~ ~ .  In view of 
the uncertainty of a numerical factor, assumed to be of order 1, either value is compatible 
with the measured 0 . 0 0 4 ~ ~ .  Thus, the small observed frequency discrepancy is about 
what ought to be expected from the known finite bandwidth of the system. 

5. Further discussion 

There is one feature of these results that needs additional explanation. Wright and 
Nye (1982, p 372) show that their two-beam model is degenerate, in the sense that the 
dislocation trajectories obey relations (1) exactly rather than approximately, and that 
the trajectories pass exactly through the continuous-wave null lines for frequency wo. 
A small extension of their argument shows that this degenerate feature is possessed 
by all models where the transmitted pulse given by (2) has a real envelope function 
f (  t ) ,  and where the receiver picks up just two faithful versions of this pulse that differ 
only in amplitude and arrival time. The spatial arrangement of the continuous-wave 
fringes is not important. If this description fitted our experiment, we should expect 
( A w ) , ~  = 0, contrary to observation. 

In fact our arrangement departs significantly from that just described because of 
the response characteristics of the two transmitting transducers. They were not resonant 
at exactly the frequency of their excitation, wo, and therefore the acoustic pulses they 
produced were not simply amplitude-modulated harmonic waves of frequency wo (f(  t )  
real), but showed a phase modulation as well U(?)  complex). Loosely speaking, the 
frequency was slightly different in the rising and falling parts of the pulses. This would 
be sufficient by itself to remove the degeneracy, but in addition the resonant frequencies 
of the two transmitting transducers were slightly different. The net effect is that the 
ideal two-pulse degeneracy was not present. 

To summarise, we have inquired into the frequency response of the transmitting 
transducers just to satisfy ourselves that the system observed had sufficient generality. 
Having done so, we need not take account of the transmitter response in detail because 
it is already included within the transfer function of the physical system under 
observation. 
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Appendix 

We derive here the formula - ~ U * A T ~  used at the end of § 4. Wright and Nye 
(1982) give in their § 3.8 a theory for small bandwidth valid in the immediate neighbour- 
hood of a continuous-wave null line, and we assume this to be applicable, at least for 
the minimum in the central lower diagram of figure 6, where the receiver was closest 
to the null. 

The theory uses a real-imaginary representation of the complex transfer function 
a (  r, U ) ,  thus 

a(r ,  w)=eiPo[P(r, w)+iQ(r,  U ) ] ,  (AI)  

where Po is an arbitrary phase chosen to make (dP/ao),,,, vanish at a chosen origin 
r = 0 on the null line. The required quantity (A@),, is given (on p 369 after equation 
(87)) by the formula 

(AW)th = u 2 b 8 /  b4 

in terms of two coefficients b4 and b8 which are proportional to frequency derivatives 
of Q(r, w )  taken at w = wo and r = 0: 

r = O  r=O 

Our task is to estimate the ratio b,/ b4, which has the physical dimensions of time. 
The essential question is: what determines this timescale? First of all, notice that it is 
entirely to do with the properties of the transfer function a(0, w ) ,  which measures how 
the continuous-wave diffraction amplitude depends on frequency at r = 0, and therefore 
it cannot involve U, which is a property of the pulse. 

The only other timescales in the problem are set by the centre frequency wo and 
by  AT^, which is half the relative delay time between the two waves arriving at r = 0. 
In the ideal two-beam model of Wright and Nye, from their equation (90), 

~ ( 0 ,  W )  a l ( w A ~ o ) ,  (A41 

where a, denotes a (dimensionless) function of a single dimensionless variable. That 
is, the timescale for w is set by AT,. This result is general. The role of w, is solely to 
decide the position of the continuous-wave null line in question. 

It follows from equations ( A l )  and (A4) that 

Q(0, 0) = QI(WAT0) 

where Q1 likewise denotes a (dimensionless) function of a single dimensionless variable. 
Then, by differentiation and use of (A3), 
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The factor Q ; ~ ( u ~ A T ~ ) / Q ~ ( w ~ A T ~ )  is dimensionless and we assume it to be of order 1. 
It follows from (A2) that 

(Aw),, - $T’AT~.  

References 

Berry M V 1981 in Les Houches Summer School 1980-Physics of Defects vol 35, ed R Balian, M Kldman 

Blackman R B and Tukey J W 1958 77p measurement of power spectra (New York: Dover) 
Nicholls K W 1984 Numerical and experimental studies of dislocations in pulses of waves, PhD thesis University 

Nye J F 1981 Proc. R. Soc. A 378 219-39 
Nye J F and Berry M V 1974 Roc.  R. Soc. A 336 165-90 
van Randeraat J and Setterington R E (ed) 1974 Piezoelectric Ceramics (London: Mullard Ltd) 
Walford M E R, Holdorf P C and Oakberg R G 1977 J. Glaciol. 18 217-29 
Wright F J and Berry M V 1984 1. Acoust. Soc. Am. 75 733-48 
Wright F J and Nye J F 1982 Phil. Trans. R. Soc. A 305 339-82 

and J-P Poirier (Amsterdam: North-Holland) pp 453-543 

of Bristol (unpublished) 


